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Consider a random set /„ of points in the box [n, — n ) d , generated either by a
Poisson process with density p or by a site percolation process with parameter
p. We analyze the empirical distribution function Fn of the lengths of edges in
a minimal (Euclidean) spanning tree ^ on ~tn. We express the limit of Fn, as
n —> co, in terms of the free energies of a family of percolation processes derived
from in by declaring two points to be adjacent whenever they are closer than
a prescribed distance. By exploring the singularities of such free energies, we
show that the large-n limits of the moments of ¥„ are infinitely differentiable
functions of p except possibly at values belonging to a certain infinite sequence
(pe(k)'. k >1) of critical percolation probabilities. It is believed that, in two dimen-
sions, these limiting moments are twice differentiable at these singular values,
but not thrice differentiable. This analysis provides a rigorous framework for the
numerical experimentation of Dussert, Rasigni, Rasigni, Palmari, and Llebaria,
who have proposed novel Monte Carlo methods for estimating the numerical
values of critical percolation probabilities.
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1. INTRODUCTION

Let 5" be the minimal (Euclidean) spanning tree on a finite subset S of Rd.
The geometry of 3T is a central subject in the theory and applications of
combinatorial optimization. If S is chosen randomly from Rd, then the
probability distribution of 3~ contains information about the "typical"
structure of minimal spanning trees. In this paper, we study the geometry
of 2T when S is chosen either according to product measure on the vertices
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of a lattice JS? or according to a Poisson process on Rd. The purpose of our
study is to develop the link between minimal spanning trees and percola-
tion theory. This will be achieved by an analysis of the empirical distribu-
tion function of the edge-lengths of ff', and by relating this function to the
"number of clusters per site" (or "free energy") of an appropriate site per-
colation model (in the lattice case, we shall have to consider an infinite
family of site percolation models constructed on the vertex set of ,$?).

As mentioned above, the theory of random minimal spanning trees
is quite well developed already; see refs. 2-4, 18, 22, 23, 25 for example.
A relationship with percolation theory was proposed recently in refs. 8, 9,
16, and we shall explore this relationship further here. In refs. 8, 16 were
reported the results of Monte Carlo experiments designed to estimate
numerical constants (particularly the critical probabilities) associated with
certain percolation models. It was proposed there that one may learn the
value of a critical point by studying the locations of singularities of func-
tions obtained as the limits of the sample mean and variance of the edge-
lengths of a certain sequence STn of minimal spanning trees defined on finite
boxes in Rd. The methods used in the current work are analytic and mathe-
matically rigorous, and our conclusions are partially complementary to the
propositions of refs. 8, 9.

We recall the definition of a minimal spanning tree. Let S be a finite
subset of Rd where d > 2 . A minimal spanning tree (MST) on 5 is a con-
nected graph y having vertex set S such that the sum of the (Euclidean)
edge-lengths of 9~ is minimal. That is to say, we require that

where \\e\\ = \\x — y\\ is the Euclidean distance separating the endvertices x
and y of the edge e, and the minimum is over all connected graphs G on
the vertex set S.

Consider a realisation w of a site percolation process, with density p,
on a lattice Of embedded in Rd; note that co is a random subset of the
vertex set of !£. Write yn for the MST on the vertex set con/4,,, where
An=[ —n, n)d is a box of side-length 2n. Whereas refs. 8, 16 are directed
largely at the sample mean and standard deviation of the edge-lengths of &~n,
we consider here the entire empirical distribution function of the edge-
lengths. Writing Fn for this function (i.e., Fn (a) is the proportion of edges
in yn having length not exceeding a), we shall prove the convergence, as
n-> oo, of Fn to a certain deterministic limit function Hp. Furthermore
Hp(o.) may be expressed in terms of the "number of clusters per site" K P ( a )
defined as follows. For a e (0, oo) we construct a graph on co by joining two
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points if and only if they are separated by a Euclidean distance not exceed-
ing a. For x ec a, let C" (w) denote the connected component (or "cluster")
of this (infinite) graph containing the vertex x. Finally, we define KP(O.) =
Ep o -1 I Oeco) where Ep denotes expectation. We shall prove that

The last fact is actually rather straightforward (see Section 3). By
exploring the weak convergence of the sequence Fn( •) of functions, we shall
obtain also the convergence of the moments of Fn( •) to those of the limit
function.

We turn now to the "singularities" proposed in the numerical work of
ref. 8. The existence of such singularities is related to singularities of the
family KP(O.) of functions of p, as a ranges over the set (0, oo). The rigorous
theory of such functions is incomplete (see ref. 11, Chap. 4), but it is
believed that, for fixed a, the function KP(OL) is a real-analytic function of
p on [0, 1] except at a certain critical value pc(<x.). At the value pc(a.} in
two dimensions, the function KP(OL) is believed to be twice differentiate
but not thrice differentiable. It is an open problem to prove that Kp(y.)
is not infinitely differentiable on the entire interval [0, 1]. If we accept the
physical picture just described, then we may deduce the existence of an
infinite family of singularities of the limiting distribution function Hp( •) =
1 — K P ( - ), i.e., an infinite set of values of p at which the moments of Hp are
not infinitely differentiable functions of p. See Theorem (LP) (3.10) and
Theorem (L) (3.11).

In the limit as p .0, the percolation model converges weakly (when
correctly re-scaled) to a Poisson process. Versions of the above statements
are valid in the Poisson setting also, and we include these in the subsequent
sections. For the basic properties of percolation and Poisson processes, we
refer the reader to refs. 11 and 6, 19 respectively.

2. PRELIMINARIES

The meaning of the symbol \A\ will vary according to context: if A is
a countable set, \A\ will denote the cardinality of A, and otherwise \A\ will
denote the d-dimensional Lebesgue measure of A ( < ^ R d } . Let d > 1. On Rd,
we denote the Euclidean norm by ||-||. If A, B < Rd, we define \\A, B\\ =
inf{||a-b|| :a e A,beB}.

We write Bd(x, r) = B(x, r) for the closed Euclidean ball in Rd with
radius r centred at x, and dBd(x, r) = dB(x, r) for its boundary. Let B(r) =
B(r,0) and B(r} = d B ( r , 0 ) .
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Suppose F is a finite weighted graph and oce R (see the appendix for
graph-theoretic terminology). We denote by P* the spanning subgraph of
F obtained by deleting all edges of 7" whose weight strictly exceeds a. Let
E(F) be the number of edges of F. We define the "edge-weight distribution
function" Fr of F by, for a e R,

Let Q be the collection of locally finite subsets of R . We shall work
on the box An = [—n,n)d. For u>eQ, we write

Let rn(co) be the complete graph on the finite set i^(to). For each edge
{x, y} of rn(c0), we assign to it the weight \\x — y\\. Let &~n(co) be any mini-
mal spanning tree (MST) of the weighted graph Fn(co). We write

By Corollary (A.4) in the appendix, E(&"l((o)) and Fn do not depend on
the choice of the MST 3Tn, but only on the set Yn.

Suppose u>eQ. Let raL(o>) be the graph having vertex set o> and edge
set consisting of all pairs {x, y} with x, yeco and 0< \\x — y\\ ̂ a. For
xeco, let C"(a>) be the collection of vertices in the connected component
of rx((o) containing the point x. We refer to C"(co) as "the cluster at x
when the maximal edge-length is set to a".

We interpret the term "lattice" & to mean a subset of Rd satisfying the
following five conditions:

(i) Jzf is locally finite,

(ii) £? is invariant under translation by a unit vector in any of the
co-ordinate directions,

(iii) Jz? is invariant under permutations of the coordinates of Ud, and
also under the reflection (xt, x2,..., xd)i-» ( — xt, x2, ••••> xd),

(iv) for every pair x, ye&, there exists a translation r and a rota-
tion p of Rd such that y = r(x) and <£ = ip(&\

(v) the origin 0 belongs to Z£.

Note that a lattice is a set of points rather than a graph. The
arguments and results of this paper are valid when applied to sets !£ of
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greater generality than required by (i)-(v), but we assume these five condi-
tions here for simplicity of presentation.

For a given lattice Z£ in R"*, and a > 0, we construct a graph <£* by
joining any pair of points in X which are separated by distance <x or less.
The ensuing graph will generally be disconnected, if a is small. There may
exist ranges of values of <x for which J?a contains infinite components with
dimensions strictly less than d. We shall concentrate on the component of
%?* containing the origin, which we denote by ^fa(0).

We now concentrate on two probability distributions for u>. Let Z£ be
a lattice in Rd. The set co will be distributed either as the set of open sites
in a site percolation process with density p on Z£ (we refer to this as "the
lattice model"), or as a Poisson point process in Rd with intensity measure
given by p \-\ (we call this "the Poisson model"). When we refer to "both
models" or "either model", then it is these two models that are meant. In
both models we refer to p as the "density". The symbols Pp and Ep denote
(respectively) probability and expectation with respect to either of these
measures, unless we state explicitly that we are considering only one of the
models. Because the statements of many of our results are identical for the
two models, we usually use the same notation. When necessary, we use
the superscripts L and P for the lattice and Poisson models, respectively;
in addition, we write (L) (resp. (P)) in the title of any theorem or lemma
which applies to the lattice (resp. Poisson) model, and (LP) when pertaining
to both cases. For recent work on minimal spanning trees for the Poisson
model, see refs. 4, 18, 22 and the references therein.

3. RESULTS

There are two (related) functions which are central to the analysis
which follows, namely the quantities given by

In the case of the Poisson model, the above conditional expectation is
interpreted in the usual way (see ref. 6). The quantity K P ( ) , viewed as a
function of p with a held fixed, is often referred to in the physics literature
as a "free energy" function. However, we shall refer here to KP(OL) as the
"number of clusters per site"; see Chapter 4 of ref. 11 for the basic proper-
ties of KP(OL) in the lattice case. It is evident from the usual re-scaling
argument that



6 Bezuidenhout et at.

in the case of the Poisson model; see refs. 15, 21 for more details of this
case.

The following theorem contains the basic ingredients of the approach
of this paper. The proof is straightforward, and a sketch thereof is presented
at the end of this section.

(3.3) Theorem ( L P ) . Let a, p>0. We have that, as n-> oo,

We shall show that Hp is a distribution function, and shall study its
properties in some detail. Also, we shall investigate the convergence, as
n -> co, of the sample moments of the distribution function Fn to those
of Hp. Prior to doing this, we define a certain sequence of values of p at
which difficulties arise. These are exactly the critical probabilities of a
certain family of percolation models.

Let a > 0, and define the function

Note that, in the lattice case, 6"(p) is essentially the percolation probability
of the component ^fa(0) of the graph £"*. Using standard arguments from
percolation theory (see refs. 11, 21), we have that there exists pc(o.) > 0 such
that

For the Poisson model, the quantities pc(ot) =pp(a) may be expressed
in terms of one another: using the usual re-scaling, we have that Pp(a) =
< * - ~ d P d ( 1 ) - The situation is more interesting in the lattice model. Suppose
that we are working on the lattice t£, and let &(£?) = {\\x- y\\ :
x, y e y, x ^ y} be the set of "inter-point" distances. It is easily seen that
the set 2(<£} is countable, does not contain 0, and has no finite limit
points. Consequently we may express 2>(^}'m the form 3>(1£) = {a^.: k > 1}
where

It is clear that, for k> 1,
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Here are some properties of the <x.k and pc(ok). The proof is presented at the
end of this section.

(3.5) Theorem ( L ) . (i) The growth function of g satisfies
\y r\ B(m)\/\B(m}\ -> c1 as m-> oo, for some constant c1 =c1(Jz?) >0.

(ii) There exists a constant c2 = c2(^)>0 such that ak+1 ^+1
and c2k

l/d < oi k<k, for k > 1.

(iii) We have that pc(a.k) > p c(a k +1) for all k. and p c ( a k ) - > 0 as

k-> GO.

(iv) Let K= inf{k:pc(ak) < 1}. Then (pc(ak): k^ K) is a strictly
decreasing sequence.

In order to study the properties of the empirical edge-length distribu-
tion function Fn( •, co), we shall need certain information about the smooth-
ness of the limit function Hp( •). The necessary facts are contained in the
next two theorems.

(3.6) Theorem ( L P ) . Let <xe(0, oo). Viewed as a function of p,
KP(L) is continuously differentiable on its domain. (This includes the state-
ment that K P ( l ) has one-sided derivatives at all finite boundary points.) It
is infinitely differentiable (with one-sided derivatives where appropriate)
except possibly at the critical point p=p c (x ) .

Standard physics dogma asserts that, in two dimensions, K P ( x ) is twice
differentiable at pc(a.) but not thrice differentiable, but no proof is known
of this statement (see ref. 11, p. 78).

(3.7) Theorem ( L P ) . If p»0, then Hp(-) is a distribution func-
tion. In the Poisson case, the measure corresponding to Hp = Hp is
absolutely continuous with respect to Lebesgue measure on R, and there
exist strictly positive constants y0 and y1 such that

We turn now to the definition of the moments of the distribution func-
tions Hp and Fn, namely the quantities given when p> 0 by
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(3.10) Theorem (LP). Let j>1.

(i) We have that M J , n ( w ) - > m j ( p ) a.s. and in L1 as n -> oo.

(ii) The function mj(p) is differentiable except at the point p = 0.
It is infinitely differentiable in the lattice model except possibly when
p e { p c ( a k ) : k> 1}. In the Poisson model, it is the case that m p ( p ) =
p- j / d m p (1 ) for/»0.

(iii) We have that p j / d m j ( p ) -» mp( 1) as p -»0, where mp( 1) is given
as in (3.9) with H1 replaced by Hp.

As remarked above, for a given percolation model, it is believed that
the number of clusters per site (or "free energy") is not infinitely differen-
tiable at the critical point. Such a singularity would be shared by the
moments m j ( p ) given above. We state this formally in the following way.

(3.11) Theorem ( L ) . Let k , j , r > 1 , and consider the lattice
model. If mj(p) is r times differentiable at the point p c ( a k ) ( < 1 ) , then
K p ( a k ) is r times differentiable as a function of p at this point.

In ref. 8 is proposed the following method for estimating critical
probabilities. Consider a realisation of a site percolation process on a graph
(such as the square or triangular lattice). Construct a MST on the points
within the box An and consider the empirical edge-length distribution func-
tion Fn. After a sequence of numerical experiments, one may plot the mean
and variance of Fn against the variable p. The experiments of ref. 8 suggest
that these functions have singularities at the critical point of the lattice,
and it was proposed that the above procedure might be used in order to
estimate the true value of this critical point. We make two remarks about
this procedure. First, the results of the current paper indicate that these
functions have an infinite set of singularities. Secondly, the outcome of the
numerical procedure depends on the actual embedding of the lattice in Rd.

In advance of delivering proofs of Theorem (LP) (3.3) and Theorem
(L) (3.5), we summarise the contents of the remainder of the paper.
Throughout, we present proofs only when novelty is required. Some of the
required arguments are fairly standard, in which cases references are given
and the details omitted. Section 4 contains some technical estimates of use
later. Theorem (LP) (3.6) is proved in Section 5, and Theorem (LP) (3.7)
in Section 6. The remaining two sections contain the proofs of Theorem
(LP) (3.10) and Theorem (L) (3.11). Graph-theoretic definitions have been
relegated to the appendix.
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Sketch Proof of Theorem (LP) (3.3). It follows from elementary
graph-theoretic considerations (see the appendix) that

where Kn(a, e) is the number of components of the graph ^(u>). We sum-
marise the basic steps of the proof of the theorem in the case of the lattice
model; for the details see page 73 of ref. 11, where they are presented for
nearest-neighbour bond percolation on the cubic lattice. We have that, as
n —> oo,

by the strong law of large numbers. Use of the ergodic theorem yields that

where 1 { A } is the indicator function of the event A. The a.s. convergence
in the statement of the theorem follows immediately. Convergence in L1

then follows by use of the bounded convergence theorem.
In the Poisson case, the claim of the theorem may be obtained by

approximating to Ud with a discrete grid, and by taking the limit as the
grid size approaches 0. |

Proof of Theorem (L) (3,5). (i) This follows from the local finite-
ness and translation invariance of <£.

( i i ) Since 0 lies in !£, and E is invariant under unit shifts, we have
that Z dcE. it follows that D(e)>2 {1, 2,...}, whence ak^k and ak

a1* + 1. There exists a strictly positive constant b = b(£) such that the num-
ber of points; y of 2f satisfying ||y|| <r does not exceed brd. Let k>1. There
exist x,ye^ such that \\x\\ ̂ ^/d and \\x— y\\ = ak. By the triangle
inequality, \\y\\ ̂ ak + ̂ /d, and therefore

k^b(ak + / d ) d - b ( d ) d

since ak is a non-decreasing sequence. The lower bound on ak follows.

(i i i ) The monotonicity of pc(ak) is trivial since a k^a. k + 1 . We use a
simple block argument for the second part. Let p > 0 and choose an integer
M such that

(3.13) Pp( A M contains a point of w) > pc( Z2)
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where p c ( Z 2 ) is the critical probability of site percolation on the square
lattice. Now choose k such that a k>4MN /a . With this choice of k, we
have that \\x — y\\ <ak for all pairs x, y satisfying xeAM, yeAM+(2M, 0,
0,..., 0). For x1, x2e2, we colour the translate AM + 2M(x 1 x2, 0,..., 0) of
AM green if it contains some point of co. The green boxes constitute a site
percolation process on a copy of the square lattice, each site of which
represents the corresponding translate of AM. By (3.13), this process is
supercritical. It follows that p c (a k ) ^p.

(iv) A detailed argument would be long and contain no new ideas,
and is therefore omitted. The claim may be shown by following the
methods of ref. 1. |

4. TECHNICALITIES

We establish next certain inequalities which will be necessary for the
proofs which follow later.

4.1. Re-scaling

For r>0 and xeZd, define the box Ax = 2rx + (r, r,..., r) + [ -r, r}d.
For fixed r, the A* will serve as sites in a re-scaled process. Suppose r>0
and weQ. We call x (eZd) r-occupied if co n Ax + 0, and we write &rio for
the set of r-occupied sites of J.d. If to is a realisation of any of the models
considered in this paper, 0rw is then a realisation of a site percolation
process on Zd. So long as r is chosen suitably, we have that p(x) = Pp

(x is r-occupied) does not depend on the choice of xeZd. Note that

for all positive multiples n of 2r.

Proof, We use a fairly standard argument in order to build a spanning
tree of o> n An by joining together minimal spanning trees on certain sub-
sets of An. Let coeQ, let n, r>0, and let m = n/(2r), assumed integral. We
partition An into boxes, each of which is a translate of Ar, in such a way
that the centres of these boxes form a copy of Am (suitably re-scaled and

( 4 . 1 . 1 ) Lemma ( L P ) . If ae R, weQ, and r >0, then

for the Poisson model, with r > 0,
for the lattice model on Zd, with r= 1, 2,...
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translated). Let w = 0ra>. We may assume that Vm(w > 1 and a.^2r^/d,
and we do so for the rest of the proof. Let &~m(oo) be a MST of u> n Am and,
for each xeAm which is ^-occupied, let F r((u, x] be a MST of ax^A*. We
construct a spanning tree of wr\An as follows. First, take the union of all
such fr(a>, x), noting that this union is a spanning forest of co n An. For all
pairs x, y e <L n Am which are joined by an edge of y~m((a\ we add an edge
joining some point (chosen according to a predetermined rule) in wr\A*
to some point in ca n Ay

r. The resulting graph is a spanning tree of w n An.
We claim that, by Corollary (A.4) in the Appendix,

The following two facts are relevant to this inequality. First, the diameter
of Ar is 2r ^fd ( <<x), whence all edges in any given Jr(w, x) have length
not exceeding a. Secondly, if there is an edge {x, y} of F m ( ca ) with length
not exceeding (a. — 2r / d ) / ( 2 r ) , then the above construction requires that
an edge be added in An joining some point in A* to some point in Ay\ no
two such points are further than a. apart. Now,

by (A.1). Substituting this into (4.1.2) yields the result. |

4.2. Comparison with Geometrically Distributed
Random Variables

It will at times be useful to bound the edge-length distribution func-
tion of a random MST in terms of the empirical distribution function of a
sequence of geometrically distributed random variables. We shall use such
an inequality only for the case of the lattice model on Zd, and therefore we
consider this case only in this subsection.

We say that a random variable Z is geometric-p if Z takes the value
k with probability (1 — p ) k - 1 p , for k=1 , 2,....

(4.2.1) Theorem ( L ) . Let ca denote a realisation of a site percola-
tion process on J.d with density p, and let Vn and Fn be as in Section 2.
There exists a sequence X 0 ( w ) , X 1 c o ) , . . . of independent geometric-/? random
variables, depending on a> alone, such that
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where Fn(-,co) denotes the empirical distribution function of the random
sequence X^co),..., X V n ( w } _ i ( c o ) .

Proof. We turn 1d into a graph by adding edges between any two
points x, y satisfying ||x-j|| = 1. Let (o^Zd. Let K be a fixed nearest-
neighbour path in Zd that starts at the origin and visits each site in Zd

exactly once; we require that, for every «^0, n visits every point in An

before visiting any point in An +1\An. Let 7r(1), n(2),... be the sites in n in
the order visited. Let ib(co), iz(w)),... be the increasing sequence of indices i
for which n(i)eo>. For k^1 , let ok(w) = n(ik(co)) and let r k (w) be the
straight line segment in Rejoining a k (w) to crk+1(co). Let E(a>) be the path
ffi(eo), r i i ( w ) , a 2 ( w , ?2(c°)> •••» and let ^n(a>) be the sub-path a^wi), nb^ca),
a2(u)),rj2((o), ...,aVn(w) (if Vn(co)>0). Then Tn(w) is a spanning tree of
Vn(o»). Let X0(co) = i1(w) and, for K>1, let A'k(cw) = ki +1 ,(to)-/fc((a) and
lk(«)= | |ak+i(c0)-<T*(co)l | . We have that lk(oo)^Xk(<o) for A: ^ 1.

Suppose now that to is distributed as the set of open sites of a percola-
tion process on Zd with density p. Then the Xk are independent geometric-/)
random variables. Assume Vn(a>) > 1, and let Pn(co) be the empirical distri-
bution function of the sequence X 1 ( w ) , X2(w), . . . , Xv _i(o>). Let FTJ.W) be as
in (2.1) with F=Tn(a>) and using the weight function ||-||. Then FTn(w) is
the empirical distribution function of the sequence l1w), /2(w),..., l v n _ i ( c a ) .
Using Corollary (A.4), we deduce that

for all co with Vn(ca) > 1, and for all a. |

4.3. Super-Exponential Bounds for the Number of Edges

Our purpose here is to prove a bound on the tail of the number of
long edges in a MST.

(4.3.1) Lemma ( L P ) . There exist strictly positive constants K0,
y0, and yl such that

Proof. We go into some detail in the Poisson case. The proof in the
lattice case is similar but some additional complications arise because of
the lattice spacing; see the remarks at the end of the proof.

Let 0 < a < /?. If there is an edge in 3Tn((o} whose length lies in the interval
(a, /?], then it must join two points x and y such that a < \\x — y\\ ^ ft, and
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in addition (by examining Kruskal's greedy algorithm) there can exist no
point of u> n An belonging to B(x, a) n B(y, a). Therefore, for large n,

where En(y) = E(2y
n(K>}\ A(x, a, ft) is the annulus enclosed by the spheres

centred at x and having radii a and ft respectively, and 1 {•} denotes the
indicator function.

An estimate of the expected value of (4.3.2) yields

where y0 and y1 depend only on the dimension d. We have used the fact
that, if 1 / 2 ? B < < x < ||x — y | | </?, then B (x ,a . ) r \B(y ,a . ) contains a Euclidean
ball of diameter no smaller than a — (\\x — y\\ — a)^2a — ft, and at least
half of this ball lies in An, To derive the bound in the statement of the
lemma, take a. = k — 1 and ft = k in (4.3.3), and then sum over k ^ K + 1
where K is an integer. This gives that, for sufficiently large K,

where the yi are positive and depend only on d. This, taken together with
the fact that En(a.) is increasing in a, gives the result, for newly defined
7o,7i-

Here are some further notes for the lattice case. Suppose that

where Q^k<l (and <x0 = 0). If x, yetf and <n<\\x-y\\^0, then
\\x — y\\ e {ak + 1 , . . , a/}, and any point in B(x, a) r^B(y, a) r\£P actually
lies in B(x, s k ) r \B (y , a.k). This intersection contains a ball of diameter at
least 2ak-\\x-y\\^2sk-a.,. By Theorem (L) (3.5)(ii) and (4.3.4), this
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diameter is at least 2a — 2 — /?. We argue now as in the Poisson case. Note
that there exist constants ci = €,(£?) such that, for xe&,

We have therefore that there exist positive constants c4, n0 such that

if / ?><x>a 0 and 2(oc —« 0 ) >2 + /?. We note that l o g ( 1 - p ) ^ — p and
proceed as before. |

4.4. Tail Estimates for Finite Percolation Clusters

Let us consider site percolation on the graph .£"", where a>0. We
prove next two lemmas concerning the tail of the radius of the open cluster
eg at the origin. The first deals with the subcritical case (p<pe(o.)), and
the second with the supercritical case. We define the radius rad(S') of a
subset S oft f Rd containing the origin by rad( S) = inf{ r e K : S s A r}.

(4.4.1) Lemma ( L ) . Assume d>1 and <x>0. There exists a func-
tion v = v(p, a), strictly positive and continuous in p when p<pc(a.), such
that

(4.4.2) Lemma ( L ) . Assume d^2, <x>0, and p c(a.) < 1.

(a) There exists a function £ = £(/?, a), strictly positive and con-
tinuous in p when p >pc(y.), such that

(b) Let 0<p0< 1. There exist positive constants a0, y, a, such that,
if Po ̂  P ̂  1 and a ^ a0, then

where a v b = max{a, b}.
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There exists a positive constant c = c(S>) such that

Using this fact, one may obtain an estimate for the tail of the volume of an
open cluster from an estimate for its radius. Estimates obtained from the
above lemmas in this way are not the best possible, but will suffice for the
purposes of this paper. They may be strengthened by utilising further
methods of ref. 11.

Proof of Theorem (L) (4.4.1). We do not present this, since it
follows the proof of Theorem (3.4) of ref. 11. |

Proof of Lemma (L) (4.4.2). Suppose that d^3 (we shall return
later to the case d = 2). First we prove part (b), and then we indicate the
necessary steps in order to obtain part (a). We begin with two sub-lemmas.

(4.4.4) Lemma ( L ) . For d^2, there exist p 1 e ( 0 , \ ) and con-
stants y, M>0, depending on d and p1, such that

where the superscript indicates that the lattice in question is Z

Proof. By an argument presented in ref. 11 (remarks on Theorem
(6.95), pp. 138-140), there exist positive constants y0, ft, and v, depending
only on d, such that

Therefore, with p1 chosen to satisfy (I — p^^K], there exists a constant
y1 = Y 1 ( y o , ( * , V , P 1 ) such that

(4.4.5) Lemma ( L ) . Let d^2 and p0e(0, 1). There exist con-
stants a0, y, N>0, depending on d and <£, such that

Proof. In the notation of Section 4.1,
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where r(ot) = l<x./^/4d+ 12J and n = n(p, a) = 1 - (1 - pY(ft) with /(a) =
|^r(a)n«5?|. Let/?!, y, M be given as in Lemma (L) (4.4.4), and choose a0

such that f(a0)^log(l1—p1)/ log(1 — p0). Assume p^p0, so that n ( p , a )
~^pi, whence

where N depends only on M and !£. |

We turn now to the proof of Lemma (L) (4.4.2)(b) proper, when d^ 3
and 0<p 0 < 1. We adapt an argument of ref. 5 (see ref. 11, pp. 127-129).
For r e U, let Pr = {xe Rd: x1 = r] and Qr = {xe Rd: x1 ^ r}. For integral /,
the set J? nP,. constitutes a (d- 1 )-dimensional lattice, and we pick con-
stants a0, y, N according to Lemma (L) (4.4.5) with d replaced by d— 1.
We now follow ref. 11 but working with (d— 1 )-dimensional hyperplanes
rather than with slabs. Instead of reproducing the argument in full detail,
we summarise the necessary changes. Let a>a0 y ^/d v 1, let y =
sup{jx1: xe£f, \\x\\ a}, and f =[G]H; note that a«y <y> y ̂  « and ft ^ 2y. Let
xe^f be such that x1 = y. As in ref. 11, we build the cluster CJ according
to a recursive construction, and we write vi = (a21,a2,a3,..., ad) for the
earliest open vertex encountered which lies in the half-space Q^. There are
two cases to be considered.

(i) If a1 + y<(i+ 1 ) ? , we define w' = u,- + x, and we choose w" e
P(+p)+DP such that \\w'i — w"\\ <«• (Such a point w" must exist since oL^^/d.)

(ii) If s1 + y ̂  (j + 1)/?, we define w' = i;,. and w" as in case (i).

Let F, be the event that w', and w" are open (noting that wj is always
open under case (ii) above), and that |Ca(o) n P( i+1)B})\ <oo, so that, by
Lemma (L) (4.4.5),

If Ca n Qn+1 ^ 0 and | C?| < oo, then all of the events F0, F1,..., Fr_i have
occurred, for r satisfying rB n. It follows as in ref. 11 that

This implies the claim, since An has 2d bounding hyperplanes.
Next we indicate how to obtain part (a) of Lemma (L) (4.4.2) when

d^ 3. Let !£r = {x e <£ : 0 ̂  x1 ^ r}, a slab of thickness r. We join any two
points of ^ which are separated by distance a or less, and we define the
corresponding percolation probability 0*(p] = Pp( C n Jr | = oo). There is
a "slab" critical probability given by pc(a., r) = sup{p: 6"(p) = 0}. The argu-
ment of refs. 12, 13 is easily adapted to obtain that pc(a, r) |?c(a) as r-> oo.
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Suppose that p>pc(a), and find r such that p>pc(a.,r). We now
reproduce the essence of the argument in ref. 11, pp. 127-129, adapted as
above, obtaining thereby that

This implies that

It may be shown in the usual way (see ref. 11, p. 117) that 0"(p) is a
continuous, monotone, and strictly positive function of p on the interval
(pc(a., r), 1]. The required conclusion follows easily from the fact that
pc(a, r) I pc(a) as r-> oo.

For the remainder of this proof we suppose that d = 2. We utilise the
block construction of ref. 13 in order to prove Lemma (L) (4.4.2)(a). Sup-
pose a>0 and p > />c(<x), and define the rectangle TM>N= [0, M] x [0, N]
of IR2. A left-right crossing of TM, N is a sequence x0, x1, x2,..-, xr of points
in E such that

(i) xt is open and ||xi+ 1 — xi\\ ^a. for all /,
(ii) x1,x2,..., xr_ieTM,N,

(iii) X0Ce[-a, 0] x [0, N] and xne [A/, M + a] x [0, N].

A top-bottom crossing of TM, N is a sequence satisfying (iii') in place of (iii),
where:

(iii ') x0e[0, M]x\_N, N + OL] and xne [0, M] x [ -a, 0].

Before proceeding, we note a geometrical fact. If a rectangle has both
a top-bottom and left-right crossing, then the vertices therein belong to the
same open cluster of J z a . This follows by use of the triangle inequality.

Let LRM N (resp. T E M , N) be the event that TM,A?has a left-right (resp.
top-bottom) crossing. We claim that, if s > 0, there exists a positive integer
N= N(p, a, E) such that

Rather than prove this in detail, we sketch the required argument. The first
step is to note that the "block construction" of ref. 13 is valid mutatis
mutandis for site percolation on £fx. As in ref. 13, one may construct a
certain process defined on blocks of Jz? in such a way that the "block
variables" dominate (stochastically) a site percolation process having large
density. Since supercritical site percolation (with large density) possesses
left-right crossings of tubes with aspect ratio 4, with probability approaching
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1 as the size of the tube increases, one obtains (4.4.7) for large N. (The
choice of the quantity 4N in (4.4.7) is somewhat arbitrary, and may be
weakened.)

With N chosen according to (4.4.7), let R = 2N, and call the box
B R = [ - R , R ] 2 bluett

• the two rectangles [ -R, R] x [ -R, -R + N] and [-R, R~\x
[R — N, R~\ contain left-right crossings, and

• the two rectangles [ -R, -R + N] x [ - R, R] and [R-N,R~]x
[—/{,/?] contain top-bottom crossings.

We extend this definition to all translates of BR, using the "translated"
notions of left-right and top-bottom crossings.

We now renormalise. For x = ( x l , x2) e Z2, we colour x blue if the box
B* = Brt + (3Nxl, 3Nx2) is blue. We have by (4.4.7) that

and furthermore that the random variables F = ( 1 { x is blue} : x e Z 2 ) are
^-dependent for some value of k which is constant for all a, p, s, N. Let
pc(L2, site) <n< 1, where pc(L2, site) is the critical probability of site
percolation on the square lattice L2. Using the results of ref. 20, we may
choose e, sufficiently small and positive, such that the family F stochasti-
cally dominates a site percolation process on L2 with density p\ we choose
c accordingly.

Next we observe a certain property of site percolation at density n,
and then we interpret this property in the context of the original process.
Consider site percolation on L2 at density n. Let Cn be the event that the
annulus B2n\Bn contains an open circuit D having the origin in its interior,
and such that D lies in an infinite open cluster. Using standard arguments
(see refs. 11, 17), we have that there exists a function p = p(n), strictly
positive and continuous when n >pc(L2, site), such that

[Here, PK denotes the appropriate probability measure. Equation (4.4.9) is
proved using duality arguments, as follows. If Cn does not occur then either
(a) there is a closed matching crossing of the annulus, or (b) there is an
open circuit of the annulus which is not connected to infinity. Each even-
tuality has an exponentially small probability, obtained by applying ref. 11,
Theorem (3.4), to the subcritical process on the matching lattice.]

It follows by (4.4.9), and the above remarks concerning stochastic
domination, that there exists (with probability at least 1 — e - p n ) a blue
circuit of B2n\Bn which surrounds the origin and is joined to infinity.
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We note next that, if \\x — y\\ = 1, then Bxr\ByR is a rectangle of
dimensions 4N by N. Furthermore, if x and y are blue, then the set of eight
(left-right or top-bottom) crossings involved in this assumption belong to
the same connected open cluster of <£"*. Therefore, if the blue circuit exists
as in the above paragraph, then either |Cg| = oo or rad(C)<6Nn. We
deduce that

as required in part (a). That £ may be assumed continuous in p follows
from the fact that N may be assumed bounded away from co when p is
bounded away from pc.

For part (b) of Lemma (L) (4.4.2) when d = 2, let 0 <p0<,< 1, cOy/20,
and let r = LaA/20J, as in the proof of Lemma (L) (4.4.5). With this choice
of r, let B" be the set of all /--occupied points x of Z2 such that
C^r\Axr^0. The set Ba forms a collection B1 B2,... of connected subsets
of vertices of the square lattice, and we write AeBi for the external bound-
ary of Bi (i.e., AeB, contains all points ye Z2 such that (i) y is adjacent
in L2 to some xeB,, and (i i) y lies in an infinite path of L2 with points
in Z2\Bi). We make two claims for the union AeB = Ae11 u d e B 2 u . . . ,
namely:

(A) AeB is a connected set of points in the matching lattice L2 ,
obtained from L2 by adding the two diagonals to every unit face, and

(B) for all ye f e B , the point y is not r-occupied.

Claim (A) follows from consideration of the set of points x for which
there exist ueA°r, veA* satisfying ||V — u | | <<x. Claim (B) follows from the
fact that, if ||x — y\\ = 1 and ueA*, ve Ayr, then ||w — u|| ^a.

Suppose now that n < rad)Ca|) < oo, so that 0 lies in some finite cluster
which intersects the complement of An. If C% intersects Qn = {x e Rd: x1 ^ n},
then AeB contains a path, having an endpoint of the form ( — « , 0) with
ue {1,2,.. .}, and with at least u + n/(2r) points in all, none of which is
r-occupied. By counting self-avoiding paths on L2 , we obtain that

[We have used the fact that \£f n>Ar\^\Ar\ =4r2.] We pick a0 (>^/20)
such that 81/(2r0)(1 -p0]2 r 0<1 where r0 = L a 0 / ^ / 2 0 , and the claim
follows. |
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5. PROOF OF THEOREM (LP) (3.6), DIFFERENTIABILITY OF K

In this section we present a summary of the proof that, for given a > 0,
the function K P ( s ) is continuously differentiable in p on the interior of its
domain. This will be proved by the method laid out in ref. 11, pp. 78-80,
where bond percolation on the cubic lattice was studied.

A separate argument is required in order to show that one-sided
derivatives exist at the endpoints of the domain. We omit this, which
follows roughly the method used in ref. 11, pp. 140-142.

5.1. Proof of Theorem (LP) (3.6) in the Lattice Case

Let %"* denote the graph with vertex set y and with edges joining
every pair of vertices which are separated by distance oc or less. We define
a distance-a. lattice animal A to be the vertex set of a finite subgraph of y?*
containing the origin. If A is such an animal, we define its boundary A A to
be the set of sites x in !£ for which 0< \\x, A\\^OL. Let ,stf*h be the collec-
tion of distance-a lattice animals A for which \A\ =n and \AA\ =b, and
writea A H^l.

There exists a constant 6(<£} such that \Sf n B(x, a)| s£ 8(<sfsf.d for all
xe (Rrf and I. Therefore

This estimate replaces (4.14)-(4.15) of ref. 11, p. 75.
In order to prove continuous differentiability, it suffices to prove the

same property of the quantity

The idea is to show that the sum of the term-wise derivatives in (5.1.2) is
uniformly absolutely convergent for p e [ p0, p 1 ], whenever 0 < p0 < p { < 1.
The absolute value of the «th term of the sum of derivatives is bounded
above by

By means of a large-deviations estimate obtained as in ref. 11, Theorem
(4.20), one finds that, for any choice of £ > 0, this quantity is no greater than
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where u v v — max{u, v}. The proof is completed as in ref. 11, p. 79, by a
suitable choice of £,.

In order to prove the infinite differentiability of K, one follows the
arguments of ref. 11, pp. 140-142, and utilises Lemma (L) (4.4.1), Lemma
(L) (4.4.2), and (4.4.3). The only difference of note lies in the subcritical
case p<pc(a.), where ref. 11 used an exponential estimate for the volume of
CQ. In our case, Lemma (L) (4.4.1) suffices for the infinite differentiability
of KP(OL), via (4.4.3), but is not strong enough to imply real-analyticity. The
required arguments are straightforward, and we omit the details. |

In the forthcoming proof of Theorem (LP) (3.10), we shall make use
of the following result, obtained by summing estimate (5.1.3).

(5.1.4) Corollary ( L ) . Let 0 < p0>„ < p1>, < 1 and a0 > 0. Then
(d/dp)Kp(cx.) is uniformly bounded for Px0<p<p1/>^/?, and 0^a^« 0 .

5.2. Proof of Theorem (LP) (3.6) in the Poisson Case

We begin with two lemmas, the first of which demonstrates explicitly
the dependence on the parameter p of the cluster-size distribution.

(5.2.1) Lemma ( P ) . For each n^ 1, there exists a measure VB = va
which is concentrated on the interval [0, (n + 1) |fi(a)| ] and has the property
that

Proof. Fix oi^0 and «^1. Let x = {.x2,, x2,..., „} e Rd1. We write
Un(X) for the indicator function that the graph Ga(0, x), obtained from
the vertex set { 0 , x 1 , x 2 , . . . , x n } by joining all pairs of points which are
separated by a distance a or less, is connected. We write V(X) for the
volume of the union D ( x ) = B ( o ) u ( \ J n =1 B ( X i , O L ) ) of balls. Now, |Ca| =
n+ 1 if and only if the following two statements hold: (i) there exists a sub-
set X = {X1, X2,..., Xn} of w/{0} such that U n ( X ) = 1 , and ( i i ) the region
D(X)\{0, X 1 ,X 2 , . . . , Xn} is empty. Therefore,
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It follows by a change of variables that

for some measure vn. Since |V(x)| <(n + 1) | B(O)\, the measure vn is con-
centrated on the required interval. |

The mean number of points within a region of volume V equals p V.
The following lemma provides large-deviation bounds for the number of
points in a given region.

(5.2.2) Lemma ( P ) . Let vn be given as in Lemma (P) (5.2.1).
There exists an absolute constant y0 such that, for p, £ > 0 and n ̂  0,

Proof. For any p> 0

whence no term in the sum exceeds 1. Therefore, if p»0 and 0<v<
(n + 1 ) \ B ( o ) \ ,

where vn(a, b) is the vn -measure of the interval (a, b). Optimising over p for
fixed v gives

Split the integral on the left hand side of the inequality in the statement of
Lemma (P) (5.2.2) into two pieces corresponding to V < ( n / p ) ( 1 — p£) and
V > ( n / p ) ( 1 + p£). In the first integral, integrate by parts and use (5.2.3) to
obtain that it equals

if pe < 1 and n> ( p £ ) - 1 .
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Similarly, the second term is bounded by ( e /n ) n /oo+ pw)une-u du. By a
refinement of Stirling's formula (see ref. 10, p. 54), ( e / n ) n ^ e ^/2nn/n\,
whence the sum of the two terms is bounded above by

where Sn +1l is the sum of n + 1 independent mean-1 exponential random
variables. Using Markov's inequality in the usual way (see ref. 14, p. 184),

P r o b ( S n / n > a ) ^ e x p { n ( 1 - a + l o g a ) } if a>1

P r o b ( S n / n < a ) ^ e x p { n ( 1 - a + l o g a ) } i f 0 < a < 1 .

Substituting a = an = (1 ± p£,) n/(1 + 1), we obtain the claim of the lema. |

From (3.1) and Lemma (P) (5.2.1), we have that

As in the lattice case, it suffices to show that, for 0<p 1 <oo , the sum
of absolute values of the term-wise derivatives converges uniformly for
p e [ p 1 , oo). Let £>0. The absolute value of the nth term of this sum
satisfies
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since vn is supported on [0, (n+ 1) |B(a)|]. Choose £ by p£ = (4n-1 log n)1/2

so that, for large n, [epe((1 -p£)]n <n-2 and [ e ~ p w ( 1 + X)]"<e«-2. Sub-
stituting from Lemma (P) (5.2.2), we obtain that there exists a constant ylt

depending only on a, such that the right side of (5.2.4) is bounded above
by

Summing, and using the fact that £^=0 PP(\C%\ =n + 1 | Oeco)< 1 we
obtain that, for N sufficiently large and P > P 1 ,

The result follows. |

6. PROOF OF THEOREM (LP) (3.7),
FURTHER PROPERTIES OF Hp

6.1. Proof of Theorem (LP) (3.7)

Suppose that coeQ and 0 e w. The map a<Ca-» I C a I - 1 is readily seen to
be right-continuous, and it follows by the bounded convergence theorem
that H p ( - ) is right-continuous also. Obviously H P ( 0 ) = 0. Furthermore,

It follows that H p ( a ) -» 1 as <x-»oo, implying that Hp is a distribution
function.

In the Poisson case, (3.2) and Theorem (LP) (3.6) imply that Hp(o.) is
differentiate in a on (0, oo). Inequality (3.8) then follows from (4.3.3) and
the fact that \ { V n — 1 < ( 1 -e) p \An\] -»0 a.s. as n-+ oo, for fixed e>0.

6.2. Further Properties of Hp

In proving part (iii) of Theorem (LP) (3.10) in the lattice case, we
shall need to understand the behaviour of the distribution function Hp in
the limit as p / 0 . We endow the space of probability measures on R + with
the topology of weak convergence. It is an immediate consequence of
Theorem (LP) (3.6) and Theorem (LP) (3.7) that the mapping p -> Hp is
a continuous function from (0, oo) to the space of probability measures
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on R+. Furthermore, Hp converges vaguely to H0 as p-»0; note that H0

is identically zero, which is not a proper distribution function. In order to
control the escape of mass to infinity, we re-scale Hp by defining the
function

We shall now state and prove the relevant weak convergence theorem.

(6.2.2) Theorem |LP). We have that Hp converges weakly to
Hp as p -» 0.

Proof. This is a trivial consequence of re-scaling in the Poisson case,
and therefore we consider only the lattice case. We need to show that, for
fixed a > 0, K p ( p - 1 / d a . ) -»kp(a) as p -»0. Let Q' be the collection of locally
finite subsets w of Rd for which Oeco; for weQ', define fa( co) = \ C ^ ( w ) \ - 1 .
Then it suffices to show that

where vp and v are, respectively, the measures on £2' corresponding to the
set of open sites of site percolation at density p on p 1 / d f , and the Poisson
point process with intensity measure | - | , both conditioned to include the
origin. Since fa is bounded, (6.2.3) will follow if we can find a topology on
Q' under which (a) Q' is a complete separable metric space, (b) vp con-
verges weakly to v, and (c) the set of discontinuities of fa has measure 0
under v. A suitable topology is the Skorohod topology. This topology can
be specified by requiring that wn„ -> co if and only if wn B\ -> \w n B\ for
every open ball B £ Rd. It is easy to check that, under the Skorohod topology,
fa is continuous off the set {coeQ': \\x — y\\ =a for some x, yew], and
that this set has measure 0 under v. |

7. PROOF OF THEOREM (LP) (3.10)(i), CONVERGENCE
OF MOMENTS

We give the details only for the lattice case with y = Zd. For the other
cases, one first re-scales as in Section 4.1, and then uses Lemma (LP)
(4.1.1) before proceeding as in the case dealt with here.

We begin by stating a lemma which is an easy consequence of
standard theorems (see Theorem 7.10.3 of ref. 14).
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(7.1) Lemma. Suppose ^ is a positive measure on the measure
space (Q, f) and fb, f, gn, and g are functions which are non-negative,
J5"-measurable, and integrable with respect to ft. Suppose gn -> g almost
everywhere with respect to u, and \ gn d/u -> j g djj. as n -» oo. Then

(i) \ \ g n ~ g \ d n - > 0 , and

(") if fn < gn and fn->f u-a.e., then J |fn-f| du -> 0.

Since M J , n > 0 , it suffices by Lemma (7.1)(i) to show that M j ,n->
mj(p) a.s. and that E p ( M J , n ) - * m j ( p ) .

Almost Sure Convergence. For j^ 1, let Ay be the measure on (0, oo)
defined by dAj-(a) =JCL j -1 da.. We must show that, for almost all at,

It follows from Theorem (LP) (3.3) that, for almost every co, for every
rational a,

where Fn and X2 are given as in Theorem (L) (4.2.1). Using Theorem (L)
(4.2.1) and Lemma (7.1)(ii), it suffices to show that

Now Vn -» oo a.s., and

By the strong law, both sides converge a.s. to the j'th moment of the
geometric distribution, as required.

Convergence of Expected Values. If V n ( w ) < 1 , then Fn(o., o>) = 0
for all a. Thus we have (integrating by parts and using Tonelli's theorem)
that
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where we have suppressed reference to a>. However, in the notation of
Theorem (L) (4.2.1), we have that E p ( (1 - Fn(a.)) 1 { Vn > 1}) is no greater than

where the Xi are defined as in the proof of Theorem (L) (4.2.1). Note that
Vn = M{k: E k

= 0 X k > An}> whence Vn is a stopping time with respect to
the natural filtration {J^i/c^O} generated by the sequence { X 0 , X 1 , . . . } .
Let Y k = 1 { X k > a } . We have that

whence, by Wald's equation (ref. 14, p. 396) and the Cauchy-Schwarz
inequality,

where, by Exercise (10.2.15) of ref. 14,

Now, E p ( Y 2 ) = Ep(Y0) = P p ( X 0 > a ) < y 0 ( 1 - p ) « where y0 is a constant.
Also, Vn is the sum of \An\ independent identically distributed random
variables, whence

By (7.2) and the Cauchy-Schwarz inequality again, we have that

where y4 is a constant. Convergence of Ep(Mn , j) to m j ( p ) now follows by
the dominated convergence theorem and Theorem (LP) (3.3).
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8. REMAINING PROOFS, DIFFERENTIABILITY OF THE mj

There remain the proofs of parts (ii)-(iii) of Theorem (LP) (3.10), and
the proof of Theorem (L) (3.11).

8.1. The Lattice Case of Theorem (LP) (3.10)(ii)

We begin with the proof of Theorem (LP) (3.10)( i i ) in the lattice case,
beginning with the statement that m^p} is once differentiate. Let j>1 1. By
(3.1) and integration by parts, we have that

Using the mean value and dominated convergence theorems, it is enough
to show that, for any j^0 and any p0, p1 with 0 <p0< p\ < 1,

By Corollary (L) (5.1.4), the integrand is uniformly bounded for 0 < £ a < a 0

where a0 is as in Lemma (L) (4.4.2)(b). To deal with large a, we
utilise as follows the proof that K is infinitely differentiate for nearest
neighbour bond percolation (see ref. 11, Theorem (6.120), pp. 140-141).
By Lemma (L) (4.4.2)(b) and (4.4.3), there exist positive constants y2 and
X such that, for all «,

Therefore, by (5.1.1), if a^s0 and p0^ p= 1 — q^ />, ,

where the y, depend only on <£, a0, p0, and />,. Inequality (8.1.2) follows.
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Let r>1\. In order to prove that m j + 1 ( p ) is r times differentiable off
the set { p c ( o L k ) : k ^ \ } , it suffices to show the following: if K>0 and
PC(V-K+ \)<Po<P\< />c(<*x). then

The derivatives in (8.1.4) exist by Theorem (LP) (3.6). Furthermore, by
(5.1.1) and (5.1.2),

for some A = A(p0, p1, r, If).
Note for future use that

where x0 = 0, and also that a*. -» oo as k -> oc.
Let «0 ( >aK + 1) be as in Lemma (L) (4.4.2)(b), and split the integral

in (8.1.4) into three parts, corresponding to the intervals [0, <0.K+1),
[ a K + 1 , i o ) ' and [ao- °°)- BY (8.1.3) and (8.1.5), the third of these three
integrals is finite. The right side of (8.1.5) is non-decreasing in p and a, for
a<ak P<PC(°<-K), whence the first integral is no greater than

This is finite, by Lemma (L) (4.4.1).
By (8.1.6), there exist constants B, L such that the middle integral is

no greater than

which is finite by Lemma (L) (4.4.2)(a) and (4.4.3).
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8.2. The Poisson Case of Theorem (LP) (3.10)(ii)

It follows from (3.2) and (8.1.1) that

Finally, m p ( l ) < o o by (3.8).

8.3. Proof of Theorem (LP) (3.10)(iii)

This is a trivial consequence of re-scaling for the Poisson model, and
so we consider only the lattice model. Let j< 1. We are required to prove
that

where Hp is given by (6.2.1). Since Hp=>Hp as p -> 0 (cf. Theorem (LP)
(6.2.2)), it suffices to prove that, for e>0, there exists M such that

Now, by (6.2.1) and integration by parts,
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By Lemma (LP) (4.3.1), with En(y) = E ( f a ( ( o ) ) ,

for large ft and some positive constants }>,-. The required (8.3.1) follows
from (8.3.2). |

8.4. Proof of Theorem (L) (3.11)

Let k,j, r> 1 and assume that pc(a.k) < 1. We have from (8.1.1) and
(8.1.6) that

where /= [0, oo)\(ak, ak.,.,). By the argument presented in Section 8.1, the
integral is infinitely differentiable at the point pc(a.k). The claim of the
theorem is an immediate consequence. |

APPENDIX. GRAPH THEORY

A graph F consists of a set i^'(F) of points called the vertices of F, and
a set $(F) of (unordered) pairs of distinct points of V(F) called the edges
of F. If e = {v, w} e $( F), v and w are called the endvertices of e. A complete
graph is a graph F such that S(F) = { { x , y}: x, ye =v, x ¥ = y } . The
graph F is finite if V(F) is finite. A subgraph of a graph F is a graph whose
vertex set is a subset of 'f'(F) and whose edge set is a subset of £(F).
A spanning subgraph of a graph F is a subgraph of F whose vertex set
coincides with that of 7". A path n in a graph F is a finite sequence
v 1 , e 1 , v 2 , . . . , vn_i,en_l,vn where the v, are distinct vertices in V(F), and
es = {Vj, vi+l} e w(F) . In this case u, is called the initial vertex of n and vn

its final vertex. A circuit is a path u 1 , e 1 , v2, -, vn together with the edge
en= { v n , v 1 } . A graph F is connected if for every pair v, w of vertices in F
there exists a path with initial vertex v and final vertex w. A component in
a graph F is a maximal connected subgraph of F. A free is a connected
graph containing no circuits. A forest is a graph without circuits. A spanning
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tree of a connected graph is a spanning subgraph that is a tree. A weighted
graph is a graph F together with an assignment e-> w(e) of non-negative
weights to its edges. A minimal spanning tree (MST) F of a weighted graph
F is a spanning tree of F for which Zee^(^) w(e) is minimal. If ca is a
locally finite subset of Ud, a spanning tree of <y is a spanning tree of the
complete graph with vertex set ca.

Let F be a finite weighted graph with n edges. The following routine,
called "Kruskal's algorithm", is a standard greedy method for finding a
MST in r(7) Let e,,..., en be a fixed ordering of the edges of F such that
w(e i ) w(ei+i) for all /. At stage 0 we are given the vertex set of F and no
edges. We now examine the edges in the given order. At each stage, we add
the current edge ei to the graph obtained so far if and only if this does not
create a circuit. The graph obtained thereby, after all edges have been
examined, is a MST.

If the w(e i ) are not distinct, then there may be more than one MST.
For any given MST 3T of F, there exists an ordering of the vertices
(as above) for which Kruskal's algorithm gives rise to ,T.

For any finite graph F, we let V(F), E(F), and K(F) respectively
denote the number of vertices, edges, and connected components of F.
It is elementary that, if J* is a finite forest, then

For any weighted graph F, we denote by F" the spanning subgraph of
F obtained by deleting all edges whose weight strictly exceeds a. We shall
make use of the following inequality.

(A.2) Lemma. Suppose F is any finite connected weighted graph
and T is a spanning tree of F. Then

with equality for all a if and only if T is a minimal spanning tree.

Proof. We apply (A.1) to T and to T". This yields E(T)-E(T") =
K ( T ) — 1, whence (A.3) follows. For the last statement, it suffices to show
that any MST obtained via Kruskal's greedy algorithm satisfies (A.3) with
equality. Fix an appropriate ordering of the edges of F, and construct a
MST 3" using Kruskal's algorithm. After all edges of weight a or less have
been added, but before any edge with weight exceeding a has been con-
sidered, the current graph will be F. No edge of length a or less will be
considered again, and therefore the components of Ge are precisely those
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of Ta. Since Fa is a spanning forest, we have by (A.1) that E(3~*) =
V(F}-K(F"). Taken together with the fact that E ( ^ ) = V ( F ) - 1 , one
obtains equality in (A.3). Finally, if a spanning tree T satisfies (A.3) with
equality for all a, then £(7"*) = E ( f " ) for any MST F and all a; it follows
that T is a MST. |

We define the "edge-weight distribution function" Fr of a weighted
graph F by (2.1).

(A.4) Corollary. Let T be a finite connected weighted graph.

(a) Any two MSTs in F have the same edge-weight distribution
function.

(b) If T is a spanning tree and f is a MST of F, then FT dominates
Fy- in the sense that

Proof. Both parts follow from Lemma (A.2) and the fact that
E(T) = V(F) - 1 for any spanning tree T. \
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